Feature Selection and Ranking Filters

نویسندگان

  • Włodzisław Duch
  • Tomasz Winiarski
  • Jacek Biesiada
  • Adam Kachel
چکیده

Many feature selection and feature ranking methods have been proposed. Using real and artificial data an attempt has been made to compare some of these methods. The "feature relevance index" used seems to have little effect on the relative ranking. For continuous features discretization and kernel smoothing are compared. Selection of subsets of features using hashing techniques is compared with the "golden standard" of generating and testing all possible subsets of features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning Approach for Parallelization in Filters Aggregation Based Feature Selection Algorithms

One of the classical problems in machine learning and data mining is feature selection. A feature selection algorithm is expected to be quick, and at the same time it should show high performance. MeLiF algorithm effectively solves this problem using ensembles of ranking filters. This article describes two different ways to improve MeLiF algorithm performance with parallelization. Experiments s...

متن کامل

A New Perspective for Information Theoretic Feature Selection

Feature Filters are among the simplest and fastest approaches to feature selection. A filter defines a statistical criterion, used to rank features on how useful they are expected to be for classification. The highest ranking features are retained, and the lowest ranking can be discarded. A common approach is to use the Mutual Information between the feature and class label. This area has seen ...

متن کامل

Feature Selection for Image Classification Based on a New Ranking Criterion

In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters out many noisy features in the first stage. Then the new ranking criterion based on SVM-RFE method is applied to obtain the final feature subset. The SVM classifier is used to eval...

متن کامل

Feature Selection, Sparsity, Regression Regularization

from Wikipedia A feature selection algorithm can be seen as the combination of a search technique for proposing new feature subsets, along with an evaluation measure which scores the different feature subsets. The simplest algorithm is to test each possible subset of features finding the one which minimizes the error rate. This is an exhaustive search of the space, and is computationally intrac...

متن کامل

A Novel SVM based CSSFFS Feature Selection Algorithm for Detecting Breast Cancer

In this paper a feature selection algorithm CSSFFS (Constrained search sequential floating forward search) based on SVM is proposed for detecting breast cancer. It is a greedy algorithm with search strategy of constrained search. The aim of this algorithm is to achieve a feature subset with minimal BER (Balanced error rate). This is a hybrid algorithm with the combination of filters and wrapper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003